

Design Technology Policy 2024

Our Mission:

Design Technology Policy

Contents Page

Mission Statement, Ethos and Beliefs, Core Values			
Aims and objectives			
Planning, marking, teaching, health and safety, resources, equal opportunities			
Coverage- Key Stage 1			
Coverage Kay Stage 2			
Cooking and nutrition and Early Years			
SMSC in Design and Technology			
Oracy in Design and Technology			
Risk assessments			
Risk assessments			
Monitoring of teaching and learning			

Design Technology Policy

Mission

To develop responsible, independent individuals who (love learning and) have the knowledge and attitudes to be successful in an ever-changing world.

Ethos and beliefs

School should be about empowering children to be successful in an ever-changing world. By providing rich and memorable learning experiences and engaging our children through hands on activities, we support the development of their skills as well as their knowledge and understanding.

It is important to us that children are able to connect what they do at school to the real world and that they learn how to think creatively and solve problems, both independently and collaboratively. As such, we enable children to take on responsibilities, to make choices about their learning and to find out their own interests and fascinations.

Core Values

Independence:

- We are confident to be unique
- We respect each other inside and out
- We are happy for our own and for each other's successes

Responsibility:

- We treat others how we would like to be treated
- We tell the truth
- We care about each other's feelings

Success

- We ask questions and figure things out for ourselves
- We listen in a respectful way
- We try our best and learn from our mistakes

Design Technology Policy

Aims and Objectives

We live in an increasingly scientific and technological age where children need to acquire the knowledge, skills and attitudes to prepare them for life in the 21st century.

We, at St. Lawrence Primary School believe that the teaching of design technology develops in children collaboration, problem solving and knowledge in design, materials, structures, mechanisms, and electrical control. Children are encouraged to be creative and innovative and are actively encouraged to think about important issues such as sustainability and enterprise.

Through our design technology teaching we aim to:

- Equip children to use themselves as starting points for learning about design technology, and to build on their enthusiasm and natural sense of wonder about the world.
- Raise standards of achievement and attainment in design technology.
- Encourage and enable pupils to offer their own designs, to be creative in their approach to dt, and to gain enjoyment from their dt journey.
- Enable children to develop their skills of co-operation through working with others.
- Encourage children to persevere.
- Support children to acquire and apply knowledge and understanding of materials and components, mechanisms and control systems, structures, existing products, quality and health and safety.

Design Technology Policy

Planning

The long- and medium-term science planning can be found in Teacher shared, planning. It is the role of the DT leader to review the long-term plan, which is reviewed annually.

The requirements in the long-term plan are taken from each year group's projects and the Design Technology Jersey Curriculum

It is the responsibility of the class teachers to generate the medium-term plan and weekly plans, which are in line with the long-term planning requirements and therefore have clear learning objectives. It is the role of the DT leader to monitor and advise teachers on medium planning giving feedback and assistance where necessary.

Teaching of Design Technology

To provide adequate time for developing design technology, skills and understanding, each teacher provides 25 hours per year to the teaching of DT. Each teacher will deliver it as they see fit eg, 1 hour per week for ½ a term or blocks of 2 days. The skills learned in DT also help with learning across the curriculum. Knowledge about the properties of materials helps in science and the practice of measuring accurately helps in maths. These skills help in IT through the children's use of computer control and naturally in art and design.

Health and Safety

The safe use of equipment and consideration of others is always promoted. Some general risk assessments have been taken from the CLEAPS website (see Appendix) and read/amended by class teachers when necessary before specific tasks are carried out/ equipment is used. Children are made aware of safety issues and, where appropriate, the reasons behind them. In most cases, dynamic risk assessments are continuously carried out by the class teacher. Activities which take place away from the school's premises require a risk assessment form to be filled in.

Resources

The school holds a central bank (DT cupboard) of resources. The Design Technology leader is responsible for maintaining this area and ordering any necessary items that have been identified as a need. All staff members are responsible for collecting and returning necessary items to the correct place to ensure that resources are easy for all staff to find.

Equal opportunities

All children at St. Lawrence School are given equal opportunities in all areas of design technology. We are committed to providing all children with an equal entitlement to DT activities and opportunities regardless of race, gender, culture or class.

Our Mission: 'To develop responsible, independent individuals who love learning and have the knowledge and

attitudes to be successful in an ever changing world'.

Design Technology Policy

Coverage

Design and Technology education involves two important elements-learning about the designed and made world and how things work and learning to design and make functional products for purposes and users.

Key Stage 1

Through a variety of creative and practical activities, pupils should be taught the knowledge, understanding and skills needed to engage in an iterative process of designing and making. They should work in a range of relevant contexts (for example, the home and school, gardens and playgrounds, the local community, industry and the wider environment].

When designing and making, pupils should be taught to:

Design

Design purposeful, functional, appealing products for themselves and other users based on design criteria.

Generate, develop, model and communicate their ideas through talking, drawing, templates, mock-ups and, where appropriate, information and communication technology.

Make

Select from and use a range of tools and equipment to perform practical tasks (for example, cutting, shaping, joining and finishing).

Select from and use a wide range of materials and components, including construction materials, textiles and ingredients, according to their characteristics.

Evaluate

Explore and evaluate a range of existing products.

Evaluate their ideas and products against design criteria.

Technical knowledge

Build structures, exploring how they can be made stronger, stiffer, and more stable.

Explore and use mechanisms (for example, levers, sliders, wheels, and axles), in their products.

Design Technology Policy

Key Stage 2

Through a variety of creative and practical activities, pupils should be taught the knowledge, understanding and skills needed to engage in an iterative process of designing and making. They should work in a range of relevant contexts (for example, the home, school, leisure, culture, enterprise, industry and the wider environment).

Children will be taught:

Design

Use research and develop design criteria to inform the design of innovative, functional, appealing products that are fit for purpose, aimed at individuals or groups.

Generate, develop, model, and communicate their ideas through discussion, annotated sketches, cross-sectional and exploded diagrams, prototypes, pattern pieces and computer-aided design.

Make

Select from and use a wider range of tools and equipment to perform practical tasks (for example, cutting, shaping, joining and finishing), accurately.

Select from and use a wider range of materials and components, including construction materials, textiles, and ingredients, according to their functional properties and aesthetic qualities.

Evaluate

Investigate and analyse a range of existing products.

Evaluate their ideas and products against their own design criteria and consider the views of others to improve their work.

Understand how key events and individuals in design and technology have helped shape the world.

Technical knowledge.

Apply their understanding of how to strengthen, stiffen and reinforce more complex structures.

Understand and use mechanical systems in their products (for example, gears, pulleys, cams, levers and linkages).

Understand and use electrical systems in their products [for example, series circuits incorporating switches, bulbs, buzzers and motors).

Apply their understanding of computing to program, monitor and control their products.

Design Technology Policy

Cooking and nutrition

As part of their work with food, pupils should be taught how to cook and apply the principles of nutrition and healthy eating. Instilling a love of cooking in pupils will also open a door to one of the great expressions of human creativity. Learning how to cook is a crucial life skill that enables pupils to feed themselves and others affordably and well, now and in later life.

Pupils should be taught to:

Key stage 1

Use the basic principles of a healthy and varied diet to prepare dishes. Understand where food comes from.

Key stage 2

Understand and apply the principles of a healthy and varied diet.

Prepare and cook a variety of predominantly savoury dishes using a range of cooking techniques.

Understand seasonality, and know where and how a variety of ingredients are grown, reared, caught and processed.

Early years

At Foundation level, Design and Technology is an integral part of learning and is embedded throughout activities and play. At this stage, it is taught within 'Expressive Arts and Design' and 'Knowledge and Understanding of the World.' As the Nursery and Reception classes are part of the Early Years Foundation Stage, we link the learning to the objectives set out in the 'Development Matters 2021' and 'Early Learning Goals (ELGs)' which underpin the curriculum planning for children from birth to age five.

Design Technology Policy

SMSC in Design and Technology

Spiritual

Spiritual education in Design and Technology allows pupils the opportunity to exercise imagination, inspiration, intuition and insight through creativity and risk taking in analysing, designing and manufacturing a range of products. It instils a sense of awe, wonder and mystery when studying the natural world or human achievement. Encouraging creativity allows pupils to express innermost thoughts and feelings and to reflect and learn from reflection, for example, asking 'why?', 'how?' and 'where?'.

Moral

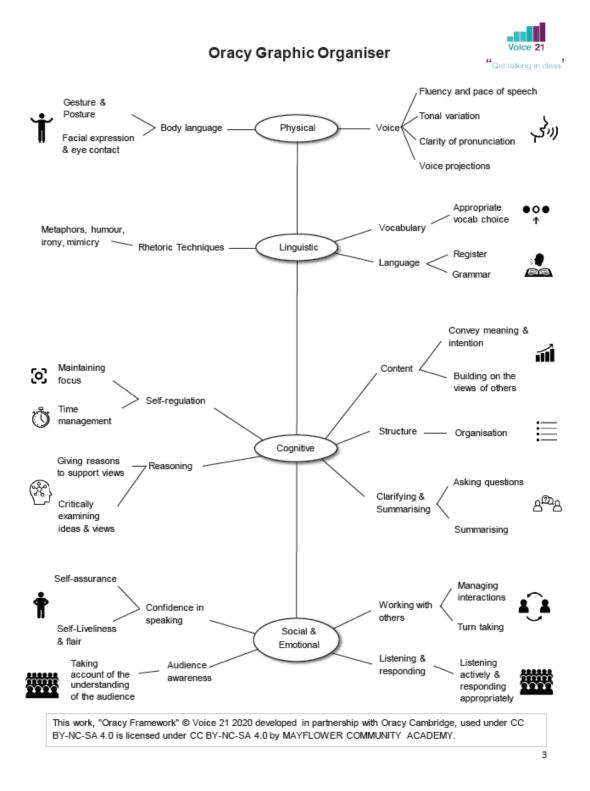
Moral Education in Design Technology gives pupils an awareness of the moral dilemmas created by technologic advances, for example, the effect advanced manufacturing automation has had on employment and how globalisation has caused poverty and inequality in some parts of the world. It encourages pupils to value the environment and its natural resources and to consider the environmental impact of everyday products. It educates pupils to become responsible consumers.

Social

Social Education in Design Technology provides positive corporate experiences – for example, through industrial visits. It gives opportunities to work as a team, recognising others' strengths and sharing equipment. Design Technology promotes equality of opportunity and provides an awareness of areas that have gender issues e.g. encouraging girls to use equipment that has been traditionally male dominated.

Cultural

Cultural Education in Design Technology reflects on ingenious products and inventions, the diversity of materials and ways in which design technology can improve the quality of life. It investigates how different cultures have contributed to technology and reflects on products and inventions, the diversity of materials and ways in which design can improve the quality of our lives.



Design Technology Policy

Oracy in Design and Technology

Design Technology Policy

Sentence Stems for giving feedback

Praise: What have they done well?

Be Specific

Give an example

Why was it good?

- Because you have...
- Your work has had the effect of...
- You have improved how...
- I notice that you...
- This means that...

- When you... it made me...
- Your use of... in order to...
- · I enjoyed the part where...
- The part where you... has had the effect of...

Enhance: What do they need to do to improve?

Be specific

Give an example

Why will it enhance their learning?

- I've noticed that you haven't...
- · Can you prove ...?
- Could you have included...?
- Where else could you use... in your learning?
- In order to improve your learning, you need to...

Checking for Understanding

- Why did you choose to...?
- Can you explain how...?
- Prove to me how you came to this conclusion by using...
- What effect did ... have on ...

Respond: Show that you understand

Read what you could have done better

Correct the mistake

Show how you now understand

- Thank you, I agree that...because...
- I can see why you've said that...
- · I actually disagree with you because...
- . I have now... the effect this has had is...
- Now that I've had time to reflect...
- I agree with your comment that... because...
- Now that you've pointed it out...
- · You've helped me to understand...

Design Technology Policy

Tiered Vocabulary Wall-A way to organise our words.

Tiered Vocabulary Walls are a way of organising words. The aim of using Tiered Vocabulary Walls is to increase the amount of Tier 2 and Tier 3 words which children hear and use themselves. Tier 2 and Tier 3 words make the most impact on our vocabulary and on our learning. These words need direct teaching in order for them to be understood and used.

Tier 3	Subject specific words: These will be rare and will be heard within particular contexts or subject areas. These will need direct teaching, such as: estuary, alliteration, igneous
Tier 2	Focus words: These will be common words that are found across subjects. These will need direct teaching, such as: contradict, circumstance, precede, retrospect
Tier 1	Everyday words: These will be basic, everyday words which will be used from an early age. These will be used freely in speech, such as: warm, dog, tired, run, table, flower

For example, Tiered Vocabulary for weather could look like:

Tier 3: barometer, isobar, celsius, tsunami

Tier 2: predict, forecast, breeze, shower, pressure

Tier 1: sun, cloud, rain, cold, warm, wind

Design Technology Policy

Talking like a Designer Sentence Stems

- I made this model because...
- I like / dislike this because...
- I think I can make this better by...
- · The purpose of my product is ...
- In my opinion, I feel that I can improve this by...
- I believe this product is (good / bad) because
- I found the process / skill of ... the most challenging, because...
- Based on my design criteria, I believe ...
- I believe this was ambitious because...
- You could improve this product by...maybe you could try...
- I used the process / skill of because ...
- I can transfer the skill of... to ...
- The problems I faced were.... I overcame these by...
- Based on the design brief I have been presented with....
- Possible improvements may include...
- This product has met / has not met the brief because ...
- Alternatively, I believe the product would be more suited to...
- . I have come to the conclusion that...
- The evidence / facts leads to...
- I deduce / deduct...
- · When I disassembled...., I learnt that...
- The computer aided design helped me to...
- To create my product, it was essential to understand...
- . When I began to critique my product, I found that ...
- · The functional properties which I am proud of, are...

Design Technology Policy

STUDENT SAFETY SHEETS

Sharps

including scalpels, knives, syringe needles, seekers, etc (2013)

Source	Hazard	Comment			
Scalpels, knives and other blades	\triangle	Cuts and puncture wounds can lead to infection, especially if the blade or point is contaminated by contact with living or once-living material.			
	DANGER	Careless use and handling of scalpels, syringes with needles, seekers and other			
Syringe needles	<u> </u>	sharps can lead to cuts and puncture wounds.			
	DANGER	Sharp scalpels are safer to use than blunt ones because there is less risk of them slipping as less force needs to be used.			
Seekers and other sharps	DANGER	Carrying scalpels, syringes with needles, seekers and other sharps especially in crowded rooms, can present a hazard to the user and others.			
		Carelessly-disposed sharps can present a hazard to waste handlers and others.			

Typical control measures to reduce risk

- Follow your teacher's guidance on safe practice in relation to the material being dissected.
- Cut in a direction away from yourself and where possible cut using a cutting board, dissection tray or pad or similar.
- Wear eye protection when changing scalpel blades or cutting material likely to "flick" (eg, cartilage or bone).
- Count sharps at the beginning and end of the lesson.
- Carry sharps with the blade or point protected, eg in a shallow tray, and do not carry them at all if you are likely to be jostled..
- Dispose of used sharps in a proper, safe container, eg a sturdy box, clearly labelled, and sealed and wrapped before disposal.

Assessing the risks

- What are the details of the activity to be undertaken? What are the hazards?
- What is the chance of something going wrong? Eg, Could the user or somebody else be cut or stabbed by accident?
- How serious would it be if something did go wrong?
- How can the risk(s) be controlled for this activity? Eg, Can it be done safely? Does the procedure need to be altered?

Emergency action

Minor cuts Severe cuts Rinse the wound with water. Get the casualty to apply a small, sterile dressing.

Lower the casualty to the floor. Raise the wound as high as possible. If feasible, ask the casualty to apply pressure on or as close to the cut as possible, using fingers, a pad of cloth or, better, a sterile dressing (adding further layers as necessary). If the casualty is unable to do so, apply pressure yourself, protecting your skin and clothes from contamination by blood if possible. Leave any embedded large bodies and press around them. Send for a first aider.

Our Mission: 'To develop responsible, independent individuals who love learning and have the knowledge and

Design Technology Policy

STUDENT SAFETY SHEETS

Electricity

Situation	Hazard	Comment
Electric power distrib- ution 230 V ac and above at high currents (over 5 mA).	ELECTRIC SHOCK /	In non-school contexts: over-head power lines and local sub-stations could cause accidents if children behave foolishly.
Home and school Above 28 V ac or 40 V dc and at currents over 5 mA. This includes the 230 V ac mains supply.	ELECTRIC SHOCK / BURN	In school science: problems may arise from terminals of high voltage (high tension, HT) supplies or low-voltage units with an HT outlet (as some supply 150 mA); also in activities involving electrophoresis, model transformers or conductivity of molten glass. In non-school contexts: problems arise due to poor insulation (damaged wiring and plugs), incorrect wiring, over-loaded circuits, poor earthing or vandalism.
School science invest- igations	LOW ELECTRICAL HAZARD	Most school circuit work, including electrolysis, is in this category (although problems could arise if currents over 10 A were used).
Less than 28 V ac or 40 V dc and at currents over 5 mA. This includes almost all work with batteries in school or elsewhere.	TOXIC / CORROSIVE	Some cells, batteries and accumulators contain TOXIC or CORROSIVE materials.
Everywhere: eg, static electricity Any voltages at very low currents (well below 5 mA)	LOW HAZARD	Examples include the van de Graaff generator (but not induction coils which may give over 5 mA). Electronic equipment nearby may be damaged by static discharges or electromagnetic fields.

Typical control measures to reduce risk

- Use the lowest voltage possible (and, for electrolysis, the lowest current and concentration that gives good results).
- Avoid exposed conductors which are live above 28 V.
- Avoid the possibility of water coming into contact with conductors which are live above 28 V.
- Check that primary and secondary insulation (ie, both layers of plastic coating) are in good condition.
- Avoid over-loaded circuits, too many plugs in one socket, etc.
- Check that plugs are correctly wired with appropriate fuses.
- Ensure good earth connections where necessary.

Assessing the risks

- What are the details of the activity to be undertaken? What are the hazards?
- What is the chance of something going wrong?
 - Eg, Accidentally touching a live component through poor design or poor maintenance.
- How serious would it be if something did go wrong?
 - Eg, Could a current flow through the heart? How large a voltage and/or current?
- How can the risk(s) be controlled for this activity?
- Eg, Can it be done safely? Does the procedure need to be altered?

Emergency action

Electric shock Take care for your own safety.

> Break contact by switching off or removing the plug. If this is not possible, use a wooden broom handle or wear rubber gloves to pull the casualty clear. See a doctor.

> If the casualty is unconscious, check that airways are clear and that the casualty is breathing and has a pulse. If so, place the casualty in the 'recovery position'. If a pulse is found but the casualty is not breathing, artificial ventilation is necessary. If no pulse is

found and the casualty is not breathing, cardio-pulmonary resuscitation is necessary.

Our Mission:

attitudes to b

Design Technology Policy

Monitoring of Teaching and Learning

We recognise that the most effective way to develop practice is to provide developmental feedback to staff. All monitoring is undertaken to promote professional development and to quality assure the practice across the school. We conduct a range of monitoring activities in order to create a full and accurate picture of the teaching and learning. Monitoring activities are undertaken by leaders, the School Advisor and other external consultants. Monitoring activities are used to inform whole school development planning and to set targets for teachers.

Version	Date Issued	Issued by	Reason for Change	Presented To (initials to agree policy has been read and understood)	Approved by:	Date
0.1	April 18	Amory Charlesworth	Draft			
0.2	Sept 18	SLT	2 nd draft			
0.3	April 23	AC	Oracy in Design and technology			

